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Approximate Calculation of Green's Functions
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The Green's function for a differential equation can be determined by an easily
computable series by decomposition of the differential operator into one whose
inverse is known or found with little effort and a second component-with no
smallness restrictions-whose effects can be determined.

A Green's function which may be difficult to determine in particular cases
can be determined using an easily computable series by decomposition of a
differential operator L, which is sufficiently difficult to merit approximation,
into an operator L, whose inverse is known, or found with little effort, and
an operator L z' with no smallness restrictions, whose contribution to the
total inverse L -, can be found in series form.

Consider therefore a differential equation Ly = x(t), where L is a linear
deterministic ordinary differential operator of the form
L = L~=o a,,(t) d"/dt", where an is nonvanishing on the interval of interest.

Decompose L into L, +L z' where L, is sufficiently simple that deter
mination of its Green's function is trivial. Then if L z is zero, we have simply
y(t) = g l(t, r) x(r) dr, where l(t, r) is the Green's function for the L 1

operator. If L is a second-order differential operator we may have
L, = dZ/dtZ and L z will be the remaining terms of L, say, a(t) d/dt + fJ(t).
More generally, L=L~=oaV<t)d"/dt" and we might take L1=dn/dtn and
L z = L~::~ a,,(t) d"/dt". We have

Ly = (L 1 + Lz)y =x(t),

L 1Y = x(t) - Lzy,

Y =Lt1x -LtILzy·

(1)

(2)

Now assume a decomposition y = L~o Yi and assuming initial conditions
are zero, or equivalently, ignoring the homogeneous solution, we identify Yo
as L tlX and write

Y =Lt1x -LtILz<yo + YI + ... )
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(3)
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from which we can determine the Yi--each being determinable in terms of
the preceding Yi-I' (If the initial conditions are nonzero, they must be
included in Yo as will be discussed shortly.) Thus,

or

We have

OCJ

Y= L (-I)i(LIILz)iLllx;
i=O

thus

YO=LIIX,

YI = -LIILzLIIX,

Yz = LIILzLIILzLIIX,

Hence the inverse of the differential operator L is given by

(5)

(6)

(7)

Equation (2) written out explicitly in terms of the Green's function for L II
is

I ity=f l(t,r)x(r)dr- l(t,r)Lz[y(r)]dr
o 0

= fl l(t, r) x(r) dr -1 LHl(t, r)] y(r) dr
o 0

I IOCJ di

= { l(t, r) x(r) dr - f
o
i~O (_I)i dri [l(t, r) ai(r)] dr.

I I n-I d i

y(t) = f
o

l(t, r)x(r) dr- f
o

t=o (_I)i dri [l(t,r)]y(r)dr

(8)

(9)

(10)



or
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(11 )yet) = J: let, r) x(r) dr - J: k(t, r)y(r) dr,

where k(t, r) = L.7:~ (-l)i(dijdri)[l(t, r) ai(r)].
Let's choose i = 0; i.e., we work with the case L = L 1 + aCt), i.e.,

L 2 = aCt). Now

i.e.,

Yo = { let, r) x(r) dr,

I ITYl = - I let, r) a(r) l(r, y) x(y) dy dr,
o 0

Y2 = IIrIY

let, r) l(r, y) ley, a) a(r) a(y) x(a) dy dr da,
o 0 0

etc.,

or equivalently

y(t) =fl(t,r)x(r)dr- fk(t, r)y(r) dr,
o 0

where k(t, r) = let, r) a(r). Hence

yet) = f let, r) x(r) dr - II k(t, r) yo(r) dr
o 0

+f k(t, r)Yl(r) dr + ....
o

If we let F(t) = L )IX = f~ let, r) x(r) dr, we can write

y(t)=F(t)- f k(t,r)F(r)dr
o

+f drrdy k(t, r) k(r, y) F(y)
o 0

-f drfT dyrdak(t, r) k(r, y)k(y, a)F(a)
o 0 0

+ ....

(13)

(14)
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If L) has constant coefficients, I(t, r) = l(t - r). For simplicity and clarity, let
us now consider the example L = L, + a with a a constant and L 11 = f dt
and the Green's function 1= 1.

Let us now inquire into our stated objective of determining the Green's
function G(t, r) for L. G satisfies LG(t, r) = t5(t - r) or

(15)

Thus G can be found from the preceding equations by replacing x by the t5
function. For the last example L = dldt + a,

(dldt + a) G(t, r) = O(t - r).

If we write G = Go + G 1 + "', we have immediately (using 1= 1, L 2 = a,
y = G, x = t5(t - r))

Go = rO(t - r) dr = 1
T

Remembering k(t, r) = I(t - r)a = a,

G, = a rdr = a(t - r),
T

(t> r).

Consequently

G = 1 +a(t - r) +a2(t - r)/2 + "',

an approximation to

G - -a(/-T)-e .

(16)

(17)

(18)

Physically this equation could model a particle of mass m moving as a
result of a force f(t) in a resisting medium:

m dvldt +Rv = f(t)

or

(L + a)v =f(t)lm,

where L = dldt and a = Rim. We have

(L +a) G(t, r) = o(t - r)/m.



Now

Thus
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G -L -I t5(t-r) -~
0- I m -m'

GI = -(aim)rrt5(y - r) dy dr = -(alm)(t - r),....
o 0

G= ~ [I - ~ (t - r) + ... ]

123

~ ~e-(R/m)(I-T)- ,
m

t> r.

Thus, we use L II as a first approximation and find the total response
function G as a series in which L 2 need not be a perturbation on L I •

For an example of a second-order differential equation, let
L I = d21dt2 and L 2= adldt +P(t). Then y = LIIX -LIIL2LIIX +
L IIL 2L IIL 2L IIX - ••• ; hence G(t, r) satisfies

[d2ldt2+ a dldt +Pl G(t, r) = t5(t - r).

The Green's function l(t, r) is now (t - r), where t> r, and G(t, r) is again
determinable as a series as before. If G(O, r) = G'(O, r) = 0, G(t, r) is easily
found from the iterative series G(t, r) =L II t5(t - r) - L 11L2 G(t, r) since
GO =L l l t5(t-r) and G(t, r)= Go(t,r) + GI(t,r) + ....

Initial conditions. If initial conditions are not zero and the equation is
second order, the first term for y is not simply Yo = L IIX but
y(O)+ty'(O)+LIIX. This is best seen by writing L l y+L2y=x as
L 1 y=x-L2y and operating with L I I from the left to obtain LIILly=
L I" IX - L I" IL 2 y. The left hand side involves a double integration of a second
derivative resulting in y(t) - y(O) - ty'(O). For nth order equations
Yo = L -IX +L~=~ (t"Iv!) y'V)(O).

Convergence. If l(t, r) is bounded in the interval of interest, a is bounded,
and x is bounded, their bounds can be taken outside the integrals. The
remaining n-fold integrals yield an n! in the denominator assuring con
vergence.
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